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Abstract:

This is a follow-up to a previous paper that describes the math behind arbitrary precision
numbers, see [7]. First of all the original paper was written back in 2013 and quite a few
things had happens since then, secondly, I came across some other interesting methods to
do the calculation of the trigonometric function. The paper describes in more detail how
to do sin(x), cos(x), tan(x), and the inverse arcsin(x), arccos(x), and arctan(x) calculation
with arbitrary precision and outline some traditional methods but also introduce an
improved version that makes the calculation 5-20 times faster than the original method
used in the author own arbitrary precision math packages.

Introduction:

When implementing an arbitrary precision math packages you would use the standard
Taylor series calculation for calculating sin(x), cos(x), arcsin(x), and arctan(x) for
arbitrary precisions, while tan(x) & arccos(x) can be derived from sin(x) or cos(x). The
Taylor series for trigonometric functions is not particularly fast in its raw form. However,
you can apply techniques that significantly improved the performance of the method. We
will discuss the various method for calculating trigonometric functions and elaborate on
the techniques like clever argument reductions and coefficient scaling to improve the
performance of the method. Furthermore, we will analyze some Newton methods for
calculating some of the trigonometric functions.

As usual, we will show the actual C++ source for the computation using the author’s own
arbitrary precision Math library, see [1].

This paper is part of a series of arbitrary precision papers describing methods,
implementation details, and optimization techniques. These papers can be found on my
website at www.hvks.com/Numerical/papers.html and are listed below:
1. Fast Computation of Math Constants in arbitrary precision. HVE Fast Gamma, Beta
Error, and Zeta functions for arbitrary precision.
2. Fast Gamma, Beta, Error, and Zeta functions for arbitrary precision. HVE Fast
Gamma, Beta, Error, and Zeta functions for arbitrary precision.
3. Fast Square Root & Inverse calculation for arbitrary precision math. HVE Fast
Square Root & inverse calculation for arbitrary precision
4. Fast Exponential calculation for arbitrary precision math. HVE Fast Exp() calculation
for arbitrary precision
5. Fast logarithm calculation for arbitrary precision math. HVE Fast Log() calculation for
arbitrary precision
6. Practical implementation of Spigot Algorithms for Transcendental Constants.
Practical implementation of Spigot Algorithms for transcendental constants
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7. Practical implementation of m algorithms. HVE Practical implementation of PI
Algorithms

8. Fast Trigonometric function for arbitrary precision. HVE Fast Trigonometric
calculation for arbitrary precision

9. Fast Hyperbolic functions for arbitrary precision. HVE Fast Hyperbolic calculation for
arbitrary precision

10. Fast conversion from arbitrary precision number to a string. HVE Fast conversion
from arbitrary precision to string

11. Fast conversion from a decimal string to an arbitrary precision number. HVE Fast
conversion from string to arbitrary precision

Change log

15-January 2023. Updated some inconsistency in the “Cos(x) using sin(x)” section and
corrected the recommendation in the same section. This paper is part of a series of
documents within the field of arbitrary precision.

26-January 2023. Cleaning up the grammar.
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The Arbitrary precision library

If you already are familiar with the arbitrary precision library, you can skip this section.

To understand the C++ code and text we have to highlight a few features of the arbitrary
precision library where the class name is float precision. Instead of declaring, a variable
with a float or double you just replace the type name with float precision. E.g.

float precision f; // Declare an arbitrary precision float with 20 decimal digits precision

You can add a few parameters to the declaration. The first is the optional initial value and
the second optional parameter is the floating-point precision. The native type of a float
has a fixed size of 4 bytes and 8 bytes for double, however since this precision can be
arbitrary we can declare the wanted precision as the number of decimal digits we want to
use when dealing with the variable. E.g.

float precision fp(4.5); // Initialize it to 4.5 with default 20 digits precision
float_precision fp(6.5,10000); // Initialize it to 6.5 with a precision of 10,000 digits

The precision of a variable can be dynamic and change throughout the code, which is
very handy to manipulate the variable. To change or set the precision you can call the
method .precision() E.g.

f.precision(100000); // Change the precision to 100,000 digits
f.precision(fp.precision()-10); // Lower the precision with 10 digits
f.precision(fp.precision()+20); // Increase precision with 20 digits

There is another method to manipulate the exponent of the variables. The method is
called .exponent() and returns or sets the exponent as a power of two exponents (same as
for our regular build-in types float and double) E.g.

f.exponent(); // Return the exponent as 2°
f.exponent(0) // Remove the exponent
f.exponen(16) // Set the exponent to 2!¢

There is a second way to manipulate the exponent and that is the class
method. .adjustExponent(). This method just adds the parameter to the internal variable
that holds the exponent of the float precision variable. E.g.

f.adjustExponent(+1); // Add 1 to the exponent, the same as multiplying the number with 2.
f.adjustExponent(-1); // Subtract 1 from the exponent, the same as dividing the number with 2.

This allows very fast multiplication of division with a number that is any power of two.

The method .iszero() returns true if the float precision number is zero otherwise false.
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There is an additional method() but I will refer to the reference for the user manual to the
arbitrary precision math package for details.

All the normal operators and library calls that work with the built-in type float or double
will also work with the float precision type using the same name and calling parameters.

Internal format for float_precision variables

For the internal layout of the arbitrary precision number, we are using the STL vector
library declared as:

vector<uintmax_t> mBinary;

uintmax_t is mostly a 64-bit quantity on most systems, so we use a vector of 64-bit
unsigned integers to store our floating-point precision number.

The method .size() returns the number of internal vector entries needed to hold the
number.

The Binary format mBinary
o— —e o ®
Integer Fraction part

part

= The binary format consist of an unlimited number of 64bit unsigned integer blocks.
= One blockin front of the period sign *’ (the integer part of the number)
= Zero or more blocks of fractions after the “’ (the fraction sign of the number)
= The binary number is storedin a STL vector class and defined
= vector<uintmax_t>mBinary;
= There is always one entry in the mBinary vector.
= Size of vector is always >=1
= A Number is always stored normalized. E.g. the integer part is 1 or zero
= The sign, exponent, precision, rounding mode is stored in separate class fields.

There are other internal class variables like the sign, exponent, precision, and rounding
mode but these are not important to understand the code segments.

Normalized numbers
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A float_precision variable is always stored as a normalized number with a one in the
integer portion of the number. The only exception is zero, which is stored as zero.
Furthermore, a normalized number has no trailing zeros.

For more details see [1].

26 February 2023.
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Trigonometric functions

There are quite a few ways you can calculate trigonometric functions with arbitrary
precision. Traditional the Taylor series expansion has been used, however in this chapter
will examine:

1) Sin(x) using Taylor series, argument reduction, and coefficient scaling.

2) Cos(x) using Taylor series, argument reduction, and coefficient scaling.

3) Tan(x) using various methods.

4) Arcsin(x) using Taylor series, argument reduction, and coefficient scaling
5) Arccos(x) using arcsin(x)

6) Arctan(x) using Taylor series, argument reduction, and coefficient scaling.
7) Arctan(x) using other methods.

The most common one for arbitrary precision libraries is the standard Taylor series
expansion method.

Sin(x) using Taylor Series

The standard way of calculating sin(x) using the Taylor Series. Sin(x) can be found with
the Taylor series:

. x3 x5 x7  x°
51n(x)=x—§+a—;+;... (D

Where the similar to the sine hyperbolic functions which the Taylor series is:

9

. x3 x5 x7 o«
smh(x)=x+§+a+;+a... (2)

Where the only difference is the alternating sign between the Taylor Terms. Sin(x) is
defined for any real number.

However, before we start the Taylor series we first reduce the argument x. We will do
that in four steps.

Step 1: We notice that sin(x) is cyclic with a period of 2x so we can easily reduce any
argument > 27 so it falls between zero and 2x by simply taking x modulo 2.

Step 2: We can further reduce x so it is between 0..w using the identity:
sin(x)=-sin(x-m) for x>m.

Step 3: We reduce it further by using the symmetry around g to the range O.. g:
. . I n
sin(x) = sin (x Z)for x> 5
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If m is ‘expensive’ to calculate (which is usually the case with arbitrary precision) we can
omit step 3 since we have a different way to obtain the same thing by just increasing the
argument reduction factor. See the section on finding a reasonable reduction factor.

Step 4: Finally we reduced the argument k£ number of times using the trisection identity:

sin(3x)=3sin(x)-4sin*(x)

until x is below a certain threshold. It is obvious from the sin(x) Taylor series that the
smaller x is the fewer terms we would need.

This argument reduction is done to reduce the number of Taylor iterations and to

minimize the round-off errors and calculation time.

After the Taylor series has converged, we use the trisection identity reverse k£ number of

times to find our result for sin(x).

To see how this algorithm works let us find the sin(0.7). After the 8" Taylor term, the
error is zero and the result is ~ 0.6442176872.

sin(x)
X=

Taylor reductions=

Terms
1

0 NO UL B WN

Term value

7.00E-01
5.72E-02
1.40E-03
1.63E-05
1.11E-07
4.95E-10
1.56E-12
3.63E-15

Original
0.7
0
Term Sum
0.70000000000
0.642833333
0.64423391667
0.64421757653
0.64421768773
0.64421768724
0.64421768724
0.64421768724

X Reduced
0.7

sin(x)
0.7000000000
0.6428333333
0.6442339167
0.6442175765
0.6442176877
0.6442176872
0.6442176872
0.6442176872

Error
-5.58E-02
1.38E-03
-1.62E-05
1.11E-07
-4.94E-10
1.55E-12
-3.66E-15
0.00E+00

We can see the effect of Step 4 by increasing the number of argument reductions. E.g. for
two reductions you get the same result after only five iterations. The argument is reduced

twice from 0.7 to 0.077...

sin(x)

X=

Taylor reductions=

Terms Term value

1 7.78E-02
2 7.84E-05
3 2.37E-08
4 3.42E-12
5 2.87E-16

Original
0.7
2

Term Sum
0.07777777778

0.07769936
0.07769938357
0.07769938357
0.07769938357

X Reduced
0.077777778

sin(x)
0.6447587967
0.6442175235
0.6442176873
0.6442176872
0.6442176872

Error
-5.41E-04
1.64E-07
-2.36E-11
2.00E-15
0.00E+00
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If we do four argument reductions in step 4, we get the result after only three iterations

sin(x) Original X Reduced
X= 0.7 0.008641975
Taylor reductions= 4
Terms Term value Term Sum sin(x) Error
1 8.64E-03 0.00864197531 0.6442243516 -6.66E-06
2 1.08E-07 0.008641868 0.6442176872 2.49E-11
3 4.02E-13 0.00864186774 0.6442176872 0.00E+00

Again, we notice that using argument reduction can seriously cut down the number of
Taylor terms needed and thereby increase the performance of calculating sin(x).

The issue with arbitrary precision

The Number of Taylor terms to reach a result does not seem so bad at a first glance. In
the previous examples, we were only using approx. 15 decimal digits. However, when we
are dealing with higher precisions e.g. 1,000 digits, 10,000, or even 100,000 digits we
suddenly have to perform a lot more Taylor terms to find our result. In Yacas [5] they
found a bound for the number of Taylor terms, » needed for the sin(x) as a function of the
number of precision in digits P and the magnitude, M of the argument x=10M:

(P — M) -In(10) B
In(P—M)—1—-M-In(10)

2(n+1) =

1 (P-Mylm(i0)
™ S n(P-M)-1-MIn(10) (3)

The number of Taylor terms needed for sin(x) as a function of precision and argument
magnitude.

Digits 10! 102 103 10* 10° 106 107 103

X

10! (11) 88 319 1,948 14,022 |1 109,512 898,358 | 7,615,327
10° 8 31 194 1,402 10,951 89,835 761,532 6,608,768
107! 3 19 140 1,095 8,983 76,153 | 660,876 5,837,230
102 2 14 109 898 7,615 66,087 583,723 5,227,006
1073 1 11 90 761 6,608 58,372 | 522,700 4,732,291
10+ 1 9 76 661 5,837 52,270 473,229 4,323,125
105 1 7 66 584 5,227 47,323 | 432,312 3,979,084
106 1 6 58 522 4,732 43,231 397,908 3,685,765
107 1 6 52 473 4,323 39,791 | 368,576 3,432,721
108 1 5 47 432 3,979 36,857 343,272 3,212,190
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10° (1) 5 43 398 3,686 34,327 321,219 3,018,284

The table above is quite interesting. E.g., the effect of argument reduction for a precision
of 100 digits reduces the number of Taylor terms by a factor of six between arguments of
1 in magnitude down to the argument of 10~ in magnitude. For a precision of 100,000
digits, the factor is only around three and for 100M digits, it is around 2.2. The lesson
here is that argument reduction is more efficient for smaller precision than for higher
precision. However overall argument reduction is beneficial at any precision. There is
another approximation for » based on the actual value of x not just the magnitude. It
usually gives a little bit less amount of needed Taylor terms. This formula can be quite
useful:

- P:In(10) _
) -In (0 (4)

Finding a reasonable reduction factor.

As can be seen in the above table a higher reduction factor greatly improved the
performance. However, how many times reduction is adequate? The argument reduction
on the front end is a division per reduction. In the back end, you do this as many times as
you did the reduction on the front end. Sin(3x)=3Sin(x)-4(sin?(x)) taking sin(x) out as a
factor you get this: Sin(3x)=Sin(x)(3-4(sin%(x))) or one subtraction and three
multiplication. Using

PIn(10)
~ 2P -mx) (5)
At a starting point of x=1, you get for P=1,00digits that the needed Taylor term is 24.
Doing three reductions you get x=1/3%=0.037. Using the above formula we expect we
would only need 14 Taylor terms. Each Taylor term requires one addition/subtraction, 1
division, and one multiplication which yields a total saving of 10 subtraction, 10 division,
and 10 multiplication. Compared to three reductions on the front end are three divisions
and on the back end 3 subtraction and nine multiplication a total saving of seven
subtraction/addition, one multiplication, and seven division. Since division is a
magnitude slower than multiplication and addition/subtraction, we can give a rough
saving equivalent with seven divisions. For higher precisions, the saving becomes larger.
We automatically calculate the reduction factor as:

k=8 Eln(z) . 1n(p)] (6)

for higher precisions, and then we adjusted the magnitude of x. After Step 2, we know
that x is in the range of [0..x] this is equivalent that the exponent of our number (in base
2) being in the range [-..1]. We add the exponent to the reduction factor. This has the
effect that our reduction factor gets smaller if x is very small preventing us from doing
unnecessary reductions. If x is very small, the reduction factor is negative and we simply
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do not perform any argument reductions at all. E.g. for P=100 you get 24 and for
P=10,000 you get 40. To compensate for the inaccuracy when adding the front and back
end calculation, we increase the precision by a quarter of the k factor. The increased
precision only generates a small performance penalty compared to the extra saving in
Taylor's terms of the overall calculation.

Guard Digits

When summarizing a Taylor series as sin(x) you need quite a lot of summarizing and that
will produce round-off errors.

For our sin (x) function, we use a simple guard digits calculation that we add

2-+ceil(log10(precision)) as extra guard digits as the working precision.

Further Improvement of the methods?

There is not a lot of things you can do to improve the sin(x) algorithm. However,
consider the Taylor series expansion of sin(x):

5 7 9

+"9— (7)

X X

. x3
sin(x) =x—ot5 -5

The issue is the division for each term. Since division is many times slower than
calculation and addition. You could group two or more Taylor terms (sometimes referred
to as coefficient scaling) and reduce the number of divisions. Consider the n’th and the
n+1 term assuming the n’th term is the negative part (for the moment):

xn xn+2

n! * (n+2)
Moreover, group them:

—~(n+Dn+2)x™ 1M
T+ DMm+2)n!  m+2)T

>

—(n+1)(n+ 2)x™ + x"*2
(n+2)!

If the n’th term is not the one starting with the minus sign you can simply just flip the
sign in the above equation, yielding:

+(n+ 1)(n+ 2)x™ — x"*2
(n + 2)!
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Then you have replaced one division for two multiplication. The (n+1)(n+2) can be done
using a 32-bit or 64-bit integer since you never get to do so many Taylor terms in real
life. There is no need to stop at just grouping two terms together you can do that for three
terms or more:

—n+1DM+2)(n+3)(n+4)x" + (n+3)(n + 4)x"2 — x™H
CEOT

Saving two divisions, however, gaining a few more addition and multiplications.

It is very easy to determine when we need to start with a negative sign by just testing if
n’th term divided by 2 is an odd number (start with a minus sign) or an even number
starting with plus sign and then alternative the sign thereafter.

Source for sin(x) with argument reduction and coefficient scaling.
float_precision sin(const float precision& x, const int klimit = 16, int group =

1)
{
const int group = 5;
size t precision = x.precision() + 2 + (size t)ceil(logl@(x.precision()));
intmax_t k;
uintmax_t 1i;
int sign;
uintmax_t loopcnt = 1;
float _precision r, sinx, v(x), vsq, terms;
const float_precision c3(3), c4(4);

// Check for argument reduction and increase precision if necessary
// Automatically calculate optimal reduction factor as a power of two
k = 8 * (intmax_t)ceil(log(2)*log(precision));

// Now use the trisection identity sin(3x)=sin(x)(3+4Sin”2(x))
// until the argument has been reduced 2/3*k times.

// Converting power of 2 to power of 3.

k = (intmax_t)ceil(2.0*k / 3);

precision += k / 4;

r.precision(precision);

sinx.precision(precision);

v.precision(precision);

vsqg.precision(precision);

terms.precision(precision);

sign = v.sign();
if (sign < @)
v.change_sign();

// Check that argument is larger than 2*PI and reduce it if needed
// to the range [0..2*PI].

// No need for high precision. We just need to figure out if we need
// to Calculate PI with a higher precision

if (v > float precision(2 * 3.14159265))
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{
// Reduce argument to between ©..2PI
sinx = _float_table(_PI, precision);

sinx.adjustExponent(+1); // same as sinx*= c2;
if (abs(v) > sinx)
{
r=v / sinx;
(void)modf(r, &r);
v -= r * sinx;
b
if (v < float_precision(9))
vV += sinx;
}

// Reduced it further to between ©..PI

// However avoid calculating PI is not needed.

// No need for high precision. We just need to figure out if we need
// to Calculate PI with a higher precision

if (v > float precision(3.14159265))

{
if(sinx.iszero()) // PI not call before. Then increase reduction
// factor with one reducing sinx from interval
// [3.14..6.28] to max [1.05..2.10].
{
++k;
}
else
{
sinx = _float_table(_PI, precision); // We don't need to worry

that we called it a second time since it will be cached from the first calculation
if (v > sinx)

{

vV -= sinx;

sign *= -1; // Change sign
}

}

// Adjust k for the final value of v when v is small (less than 1).
// We know it is in the interval between [0...PI]

// This indicates that the exponent is in the range [-inf..1]

// Avoid unnecessary argument reduction if v is small

k += v.exponent();

k = std::max((intmax_t)@, k);

// Now use the trisection identity sin(3x)=3*sin(x)-4*sin(x)"3

// k times k. Where k is the number of reduction factors based on the

// needed precision of the argument.

r = c3;

r = pow(r, float precision(k)); // Since r and k is an integer this will
be faster

vV /= r;

vsq = v.square();
r=v;

sinx = v;

if (group == 1)
{
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// Now iterate using Taylor expansion

for (i = 3; ; i += 2, ++loopcnt)
{
r *= vsq / float_precision(i*(i - 1));
r.change_sign();

if (sinx + r == sinx)
break;
sinx += r;
}
¥
else
{

std: :vector<float_precision> vn(group); // vn[@] is not used
std: :vector<float_precision> cn(group); //

if (group > 3 && klimit == @)
i=0;

for (i = @; 1 < group; ++i)
{
cn[i].precision(precision); vn[i].precision(precision);
if (i == 1) vn[1l] = vsq;
if (i > 1) vn[i] = vn[i - 1] * vsq;
}
// Now iterate
for (1 = 3; ; )
{
intmax_t j;
for (j = group - 1; j >= 0; --3)
{

if (j == group - 1)
{

cn[j] = float_precision((i + 2 * j - 1)*(i + 2 *
j), precision);
if ((1/2+3j-1) &exl) // odd
cn[j].change_sign();

else
{
cn[j] = -cn[j + 1] * float_precision((i + 2 * j
- 1)*(1 + 2 * j), precision);

}

cn[@] = abs(cn[@]).inverse();
// Summing adding from smallest to the largest number
terms = vn[group - 1];
if ((i / 2 + group - 1) & Ox1)
terms.change_sign();
for (j = group - 1; j >= 2; --j)
terms += cn[j] * vn[j - 1];
terms += cn[1];

}

r *= vsq*cn[@];
terms *= r;

i += 2 * group; // Update term count
loopcnt += group;
if (sinx + terms == sinx) // Reach precision
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break; // yes terminate loop
sinx += terms; // Add Taylor terms to result
if (group > 1)

r *= vn[group - 1]; // ajust r to last Taylor term
}

}

// reverse argument reduction
for (; k > @; --k)
sinx *= (c3 - c4 * sinx.square());

// Round to same precision as argument and rounding mode
sinx.mode(x.mode());
sinx.precision(x.precision());
if (sign < 9)
sinx.change_sign();
return sinx;

}

Recommendation for calculating sin(x)

Based on the performance measure of the various sin(x) methods recommend:

e Always use the cyclic and symmetry rules to reduce the x to the range [0. 7]
e [t is unnecessary to reduce it down to the range [O... %] using symmetry avoiding
another calculation of =.

e Use Taylor for sin(x) using an aggressive reduction factor to speed up the Taylor
term calculation.

e Use Coefficient scaling to increase performance

Cos(x):

For cos(x) we again use a Taylor series until any additional addition does not change the
result for the given precision of the number.

x? x* x® xB

cos(x) =1- N + el + al ... for any real value x

We can use the equivalent four steps procedure for cos(x), mapping it into the interval
T

[0...=].
2

Step 1: We notice that cos(x) is cyclic with a period of 27 so we can easily reduce any
argument > 27 so it falls between 0 and 2n by simply taking x modulo 2.

Step 2: We can further reduce x so it is between 0..w using the identity:
cos(2m-x)=cos(x) for x>.
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Step 3: We reduce it further by using the symmetry around % to the range 0.. g:

s
cos(x) = —cos (x - E) forx
If m is ‘expensive’ to calculate (which is usually the case with arbitrary precision) we can

T
=
2

omit step 3 since we have a different way to obtain the same thing by just increasing the
argument reduction factor. See the section on finding a reasonable reduction factor.

Step 4: Finally we reduced the argument & number of times using the trisection identity:
cos(3x)=-3cos(x)+4cos’(x)
until x is below a certain threshold. It is obvious from the cos(x) Taylor series that the

smaller x is the fewer terms we would need. We could also use the double-angle identity:

cos(2x) = 2cos?(x) — 1

Although the trisection identity serves us well for calculating sin(x) it turns out that there

is a much higher loss of precision using the trisection identity over the double angle

formula. See later.

This argument reduction is done to reduce the number of Taylor iterations and to
minimize the round-off errors and calculation time.

After the Taylor series has converged, we use the trisection or double angle identity

reverse k number of times to find our result for cos(x).

To see how this algorithm works let us find the cos(0.7). After the 8" Taylor term, the
error is zero and the result is ~ 0.7648421873.

cos(x)

X=

Taylor reductions=

Terms Term value
1 1.00E+00
2 2.45E-01
3 1.00E-02
4 1.63E-04
5 1.43E-06
6 7.78E-09
7 2.89E-11
8 7.78E-14

We can see the effect in Step 4 by increasing the number of argument reductions. E.g. for
two reductions you get the same result after only five iterations. The argument is reduced

twice from 0.7 to 0.077...

cos(x)
X=

26 February 2023.

Original
0.7
0

1.0000000000
0.7550000000
0.7650041667
0.7648407653
0.7648421950
0.7648421873
0.7648421873
0.7648421873

Original
0.7

X Reduced
0.7

cos(x)
1.0000000000
0.7550000000
0.7650041667
0.7648407653
0.7648421950
0.7648421873
0.7648421873
0.7648421873

X Reduced
0.077777778

Error
-2.35E-01
9.84E-03
-1.62E-04
1.42E-06
-7.76E-09
2.88E-11
-7.76E-14
0.00E+00
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Taylor reductions=

Terms Term value
1.00E+00
3.02E-03
1.52E-06
3.07E-10
3.32E-14

u b WN R

1.0000000000
0.9969753086
0.9969768334
0.9969768331
0.9969768331

cos(x)
1.0000000000
0.7647284320
0.7648422102
0.7648421873
0.7648421873

Error
-2.35E-01
1.14E-04
-2.29E-08
2.48E-12
2.78E-15

If we do four argument reductions in step 4, we get the result after only four iterations

cos(x)

x=

Taylor reductions=

Terms Term value
1 1.00E+00

2 3.73E-05

3 2.32E-10

4 5.79E-16

Original
0.7
q

1.0000000000
0.9999626581
0.9999626584
0.9999626584

X Reduced
0.008641975

cos(x)
1.0000000000
0.7648407840
0.7648421873
0.7648421873

Error
-2.35E-01
1.40E-06
-3.63E-12
-2.81E-13

Again, we notice that using argument reduction can seriously cut down the number of
Taylor terms needed and thereby increase the performance in calculating cos(x).

We notice that the error has increased and we cannot find an answer better than an
absolute error or ~1E-13. The higher the reduction factor the worse it gets. It has to be
noticed that this issue arises only from the use of a reduction factor and not from the use

of the Taylor series.

Although many of the same arguments used in the calculation of sin(x) also apply for

cos(x), including aggressive use of argument reduction, coefficients scaling, etc. We have

to be careful how aggressive our argument reduction can be.

Cos(x) using double angle reduction

Argument reduction reduces x to a much smaller value that is much more sensitive to
round-off errors for cos(x) than its counterpart for sin(x). It is, therefore, better to use the

double-angle formula:

cos(2x) = 2cos?(x) — 1

Alternatively, even better written as:

cos(2x) = 2(1 — cos(x))? — 4(1 — cos(x)) + 1

26 February 2023.
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Although it does not prevent round-off errors it is less sensitive that the trisection
formula. We calculate the reduction factor for cos(x) as:

k = 2[In(2) = In (P)] (10)

for higher precisions, and then we made adjustments for the magnitude of x. After Step 2,
we know that x is in the range of [0...n] this is equivalent that the exponent of our number
(in base 2) being in the range [-...1]. We add the exponent to the reduction factor. This
has the effect that our reduction factor gets smaller if x is very small preventing us from
doing unnecessary reductions. If x is very small, the reduction factor is negative and we
simply do not perform any argument reductions at all.

Source for cos(x) with argument reduction and coefficient scaling

float_precision cos(const float precision& x)
{
const int group = 5;
size t precision = x.precision() + 2 + (size t)ceil(logl@(x.precision()));
intmax_t k, 1i;
uintmax_t loopcnt = 1;
float_precision r, cosx, v(x), vsq, terms;
const float precision c1(1), c2(2), c4(4);

// Check for argument reduction and increase precision if necessary
// Automatically calculate optimal reduction factor as a power of two
k = 2 * (intmax_t)ceil(log(2)*log(precision));

precision += k;
r.precision(precision);
cosx.precision(precision);
v.precision(precision);
vsqg.precision(precision);
terms.precision(precision);

// Check that argument is larger than 2*PI and reduce it if needed.
// No need for high precision.
// we just need to figure out if we need to Calculate PI with
// a higher precision
if (abs(v) > float precision(2 * 3.14159265))
{ // Reduce argument to between 0..2P
cosx = _float_table( PI, precision);
cosx.adjustExponent(-1); // Multiply with 2
if (abs(v) > cosx)
{
r =v / cosx;
(void)modf(r, &r);

v -= r * cosx;
}

if (v < float_precision(9))
V += COSX;

}

// Reduced it further to between 0..PI.
// However, avoid calculating PI is not needed.
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// No need for high precision.

// we just need to figure out if we need to Calculate PI with
// a higher precision

if (abs(v) > float precision(3.14159265))

{
r = float_table(_PI, precision);
if (v > r)
Vv=r%*c-v; // cos(x)=cos(2PI - x) for x >= PI
}

// Adjust k for the final value of v when v is small (less than 1).
// We know it is in the interval between [0...PI]

// This indicates that the exponent is in the range [-inf..1]

// Avoid unnecessary argument reduction if v is small

k += v.exponent();

k = std::max((intmax_t)@, k);

// Now use the double identity cos(2x)=2cos(x)”"2-1

// k times k. Where k is the number of reduction factor based
// on the needed precision of the argument.
v.adjustExponent(-k); // Divide with 27k

vsq = v.square();

r = cl;

COSX = I;

if (group == 1)
{
// Now iterate using Taylor expansion
for (i = 2;; i += 2, ++loopcnt)
{
r *= vsq / float_precision(i*(i - 1));;
r.change_sign();

if (cosx + r == cosx)
break;
COSX += P;
b
b
else
{

std: :vector<float_precision> vn(group); // vn[@] is not used
std: :vector<float_precision> cn(group); //

for (1 = ©; i < group; ++i)
{
cn[i].precision(precision); vn[i].precision(precision);
if (i == 1) vn[1l] = vsq;
if (1 > 1) vn[i] = vn[i - 1] * vsq;
b

// Now iterate

for (i = 2; ;)
{
// Re-calculate the coefficients
intmax_t j;
for (j = group - 1; j >= @; --3j)

if (j == group - 1)
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cn[j] = float _precision((i + 2 * j - 1)*(i + 2 *
j), precision);
if ((i/2+3j-1) &ex1) // odd
cn[j].change_sign();

else
{
cn[j] = -cn[j + 1] * float_precision((i + 2 * j
- 1)*(1i + 2 * j), precision);

}

cn[@] = abs(cn[@]).inverse();

// Adding from smallest to largest number

terms = vn[group - 1];

if ((1 / 2 + group - 1) & Ox1)
terms.change_sign();

for (j = group - 1; j >= 2; --j)
terms += cn[j] * vn[j - 1];

terms += cn[1];

r *= vsq*cn[0];

terms *= r;

}

i+= 2 * group; // Update term count
loopcnt += group;
if (cosx + terms == cosx) // Reach precision
break; // yes terminate loop
cosx += terms; // Add Taylor terms to result

if (group > 1)
r *= vn[group - 1]; // ajust r to last Taylor term
}

}

// Double formula cos(2x)=cos”2(x)-1=-4(1-cos(x)+2*(1-cosx)"2+1
for (; k > @; --k)

{

v = cl - cosx;

cosx = -c4*v + c2*v.square() + cl;
}

// Round to same precision as argument and rounding mode
cosx.mode(x.mode());

cosx.precision(x.precision());

return cosx;

}

Cos(x) using sin(x)

Since we have a very fast and robust implementation of sin(x) that does not suffer from
the same issue of using a high reduction factor compare to cos(x) it could be interesting
to calculate cos(x) using sin(x):

cos(x) = /1 —sin?(x) (11)
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It turns out that this increases the performance by a factor of 2 times the traditional way
of calculating cos(x) directly and is therefore recommended.

There is another alternative to using the identity: cos(x) = sin (g — x). If you have a
fast generation 7 you will experience a similar performance as the cos(x) =
v/ 1 — sin?(x) but in my opinion, it will be safer to rely on the faster sqrt(x) function.

Source for cos(x) using sin(x)
float_precision cos(const float_precision& x)
{
size t precision = x.precision() + 2 + (size t)ceil(logl@(x.precision()));
float_precision cosx(x), sinx(x);
const float precision c1(1);
double d;

sinx = sin(x);

cosx = sqrt(cl - sinx.square());
d = x; d = cos(d);

if(d<0)

COSX = -COSX;
cosx.mode(x.mode());
cosx.precision(x.precision());
return cosx;

}

Recommendation for calculating cos(x)

Based on the performance measure of the various cos(x) methods recommend:

e Always use the cyclic and symmetry rules to reduce the x to the range [0. 7]

e Itis unnecessary to reduce it down to the range [O0... g] using symmetry avoiding
another calculation of 7.

e Use the double angle formula for argument reduction instead of the trisection
formula.

e Do not use the Taylor series for cos(x) with an aggressive reductions factor to
speed up the Taylor term calculation. If you do it anyway then use it with
coefficient scaling to increase performance.

e Usecos(x) =+/1 — sin?(x) as the preferred method for calculating cos(x) which
is two times faster than the other cos(x) methods.

Tan(x):
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We could use a Taylor series for tan(x) however since we have an efficient
implementation of sin(x) it is better to use the identity:

sin (x)

J1-sin2(x) (12)

tan(x) =

However, before we start the calculation we first reduce the argument x so it falls
between 0 and 27 and then call Sin(x) (see above).

Alternatively, we could use the Taylor series for tan(x):

3 5 5 9 2n(52n 2n-1
x3  2x5  17x5  62x 221(22"-1)Byx
tan(x) =x+—+—+ +
() 3 15 315 2835 (2n)!

4 (13)

Where B, is the Bernoulli number. However, since we don’t know how many Bernoulli
numbers we need this will require it to be calculated on the fly and therefore way more
complicated to implement than the identity for tan(x) using sin(x).

Source for tan(x)

float_precision tan( const float _precision& x )
{
const size t precision=x.precision() + 2;
float_precision tanx, r, v(x), pi;
const float precision c1(1), c3(3);

// Increase working precision
tanx.precision( precision );
v.precision( precision );
pi.precision( precision );

// Check that argument is larger than 2PI and reduce it if needed.
pi = _float_table( _PI, precision );
tanx = pi;
tanx.adjustExponent(+1); // 2*PI
if( abs( v ) > tanx )
{
r = v / tanx;
(void)modf( r, &r );
v -= r * tanx;

if( v < float_precision( @ ) )
v += tanx;

pi.adjustExponent(-1); // pi *= 0.5;
if( v==mpi]||]v== pi*c3)
{ throw float_precision::domain_error(); }

tanx = sin( v );
if(v<pi || v>pi*c3)

tanx /= sqrt( cl1 - tanx.square() );
else

tanx /= -sqrt( cl - tanx.square() );
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// Round to the same precision as argument and rounding mode
tanx.mode( x.mode() );

tanx.precision( x.precision() );

return tanx;

}

Arcsin(x):

We have a few options. Either we can find arcsin (x) using the Newton method or we can
do it using a Taylor series for arcsin (X).

Arcsin using Newton's method

To find arcSin(x) it is very popular to resort to a Newton iteration when solving the
equation arcSin(a)=x => a=sin(x).

Restating the problem as f(a)=sin(x)-a=0 and applying the Newton method we get:
Where f(x)=sin(x)-a and f’(x)=cos(x).

sin(xy)—a

Xn+1 = Xn cos(xy) (14)

We stop when x,=xp.1 for any given precision of the number. We do not want to calculate
both sin(x) and cos(x) so we replace cos(x) with the identity:

cos(x) = /1 — sin?(x) (15)

Yields:

sin(xy)—a

ne1 = Xn — et (16)

To speed up the iteration and ensure convergence we repeatedly reduced the argument
x to a small value using the identity:

Arcsin(x) = 2 - ArcSin( ad (17)
V2

1+\/1—x2)

Now the x argument will always per definition be between -1<x>1, so we will only need
a maximum of two argument reductions to get below 0.5.

You can obtain k, the number of reductions by repeatedly doing the below recurrence k
number of times. Set xo=x and k is the number of reductions:

Xp = —kel (18)

V2 /1+ [1-x%_,
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until xn is sufficiently low. Now we can start with an initial guess of arcsin(x) using
standard IEEE754. This gives us a starting guess for the Newton iteration with a least 15
significant digits and the Newton iteration will converge quickly with a convergence rate
of 2 meaning the number of correct digits doubles per iteration. After we find the new x,
we will need to multiply the result with x = x,, - 2% to reverse the argument reduction
we did before the Newton iteration.

To see how this algorithm works let us find the arcSin(0.3). After only three iterations the
error is zero and the result is ~ 0.304693.

ArcSin(x) Newton Original X Reduced

X= 0.3 0.3

No Reduction 0

Iteration X ArcSin(x) Error
1 0.304689231 0.304689230851802 3.42E-06
2 0.304692654 0.304692654013555 1.84E-12
3 0.304692654 0.304692654015398 0.00E+00

Now assuming for a moment we did not do any argument reduction we will see a much
slower convergence when x get near 1. See below.

ArcSin(x) Newton Original X Reduced
X= 1 1
No Reduction 0
Iteration X ArcSin(x) Error
1 1.293407993 1.293407993026020 2.77E-01
2 1.432998367 1.432998366665080 1.38E-01
3 1.502006577 1.502006576891840 6.88E-02
4 1.536415021 1.536415021395350 3.44E-02
5 1.553607368 1.553607367680850 1.72E-02
6 1.562202059 1.562202058854760 8.59E-03
7 1566499219 1.566499219274400 4.30E-03
8 1.568647776 1.568647776340770 2.15E-03
9 1.569722052 1.569722051981120 1.07E-03
10 1.570259189 1.570259189439680 5.37E-04
11 1.570527758 1.570527758123650 2.69E-04
12 1.570662042 1.570662042459940 1.34E-04
13 1.570729185 1.570729184627400 6.71E-05
14 1.570762756 1.570762755710630 3.36E-05
15 1.570779541 1.570779541251150 1.68E-05
16 1.570787934 1.570787934020610 8.39E-06
17 1.57079213 1.570792130414050 4.20E-06
18 1.570794229 1.570794228613920 2.10E-06
19 1.570795278 1.570795277678890 1.05E-06
20 1.570795802 1.570795802251530 5.25E-07
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21 1.570796064 1.570796064492250 2.62E-07
22 1.570796196 1.570796195702950 1.31E-07
23 1.570796261 1.570796260914560 6.59E-08
24 1.570796295 1.570796294618790 3.22E-08
25 1.570796312 1.570796311871080 1.49E-08
26 1.570796319 1.570796319310360 7.48E-09

Even after 26 iterations, we only get a decent result with an error margin of 7.48E-9,
while with two argument reductions, we have the result with only three iterations.

ArcSin(x) Newton Original X Reduced
X= 1 0.382683432
No Reduction 2
Iteration X ArcSin(x) Error

1 0.392678725 1.570714899985370 2.04E-05

2 0.392699082 1.570796326451610 8.58E-11

3 0.392699082 1.570796326794900 0.00E+00

This example demonstrates the benefit of using argument reduction before applying the
Newton iterations.

Using Newton's iteration gives the result in relatively few iterations however still not
very fast compared to the direct approach using the Taylor series, see next section.

Arcsin(x) using Taylor series and argument reduction

Instead of the Newton method, we can use the Taylor Series for arcsin(x) given by:

. x3 3x°5 3-5x7 3-5-7x°
Arcsin(x) =x + —=+ + + (19)
23 ' 245 ' 2467 24689

This gives us a more direct approach to arcsin(x) and applied together with the dynamic
argument reductions we see a speed up in the calculation in the range of two. As the
precision rise, this method will become increasingly faster than the Newton version.

The Taylor series seems a little hard to digest. If we denote the n’th Taylor term, r we can
go from one Taylor term to the next using the following recurrence:

T'1=x

(2n — 3)?% - x?
T, =T,

. =23,..,
" —Dan=2 " m
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We calculate the reducing factor, k as:

2 - [In(2) = In(precision)]

(20)

and adjust the reduction factor downwards if x is small to avoid unnecessary reductions.

We should be careful not to be too aggressive because of the reduction formula:

Arcsi =2 ArcSin(———
rcsin(x) rc m(ﬁ — 1—x2)

X

(21)

Require one division and two square roots (the v/2 is a constant that can be calculated

before the reduction), two multiplication, and two addition/subtracting. The benefit of
using reduction slows down and becomes counterproductive when the reduction factor
exceeds 30-40.

Below is an example of using the Taylor Series for calculating arcSin(x) with x=0.3.

ArcSin(x)

X=

No Reduction
Terms

1

O 00 NO UL &~ WN

[
N L, O

Taylor

Term Value

3.00E-01
4.50E-03
1.82E-04
9.76E-06
5.98E-07
3.96E-08
2.77E-09
2.00E-10
1.49E-11
1.13E-12
8.78E-14
6.88E-15

Original
0.3
0
Taylor sum
0.300000000000000
0.304500000000000
0.304682250000000
0.304692013392857
0.304692611400670
0.304692651032278
0.304692653798869
0.304692653999250
0.304692654014168
0.304692654015302
0.304692654015390
0.304692654015397

X Reduced
0.3

Arcsin(x)
0.300000000000000
0.304500000000000
0.304682250000000
0.304692013392857
0.304692611400670
0.304692651032278
0.304692653798869
0.304692653999250
0.304692654014168
0.304692654015302
0.304692654015390
0.304692654015397

Error
4.69E-03
1.93E-04
1.04E-05
6.41E-07
4.26E-08
2.98E-09
2.17E-10
1.61E-11
1.23E-12
9.53E-14
7.55E-15
6.66E-16

After 12 Taylor terms, we have the result with 15-16 decimal digits. If we run it with a
reduction factor of, two we get:

ArcSin(x)

X=

No Reduction
Terms

1

v b~ WN

Taylor

Term Value

7.61E-02
7.35E-05
1.91E-07
6.60E-10
2.60E-12

Original
0.3
2
Taylor sum
0.076099520968904
0.076172971428661
0.076173162841418
0.076173163501238
0.076173163503838

X Reduced
0.076099521

Arcsin(x)
0.304398083875615
0.304691885714644
0.304692651365671
0.304692654004951
0.304692654015353

Error
2.95E-04
7.68E-07
2.65E-09
1.04E-11
4.47E-14
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6 1.11E-14 0.076173163503849 0.304692654015397 3.89E-16

The same result is achieved after only six iterations. This again demonstrates that
argument reduction can reduce the workload significantly.

Arcsin coefficient scaling

We have seen that we can gain typically 2-3 times better performance if we implement
coefficient scaling. If we try to group two Taylor terms to avoid a division, we get from
the Taylor terms listed above:

3 (2n — 3)? - x2
~ 100 — 1) (2n - 2)

rn=x T forn=23,..,m

If we denoted for simplicity u; = (2n — 3)%,1; = (2n — 1)(2n — 2) and the following
term u2 and 1, we get from the above recurrence when grouping two terms together:

up - x2 U - x? U, - x?
Two Taylor terms = 1,,_4 I + 71 T =>
1 1 2

U Uy x?

Lok

Uq
Ty X2 (l— + ) =>
1

ul, U, - x2
5 (Ul | UglUy _
_ + =>
1% <l1lz L1, >

ullz + u1u2 - x2
lily

Tn—1x2(

The new recurrence for r, grouping two Taylor terms together is given by:

=X Tht1 = Th-1X

Continue one by grouping three Taylor terms together you get.

u1l213 + uluzl3 - x2 + u1u2u3 * x4
lilals

Tn—1x2(

The new rn+2 is given by:

6 Y1U2U3
Liyls

=X Thiz = Th-1X
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You can continue on this path. In the current implementation, we use a grouping of five
Taylor terms and scale the coefficients accordingly.

Source for Arcsin(x) with coefficient scaling and argument reduction
float_precision asin(const float precision& x)

{

const int group = 5;

size t precision = x.precision() + 2 + (size t)ceil(logle(x.precision()));
intmax_t k, i;

size_t loopcnt = 1;

int sign;

float _precision r, asinx, v(x), vsq, lc, uc, terms;

const float_precision c1(1), c2(2);

if (x > cl || x < -c1)
throw float_precision::domain_error();

sign = v.sign();
if (sign < @)
v.change_sign();

// Automatically calculate optimal reduction factor as a power of two
k = 2 * (intmax_t)ceil(log(2)*log(precision));

// Adjust k for the final value of v when v is small (less than 1).
// we know it is in the interval between [0..1]

// This indicates that the exponent is in the range [-inf..0]

// Avoid unnecessary argument reduction if v is small

k += v.exponent();

k = std::max((intmax _t)@, k);

// Adjust the precision
precision += k / 4;
r.precision(precision);
asinx.precision(precision);
v.precision(precision);
vsq.precision(precision);
lc.precision(precision);
uc.precision(precision);
terms.precision(precision);

// Now use the identity arcsin(x)=2arcsin(x/(sqrt(2)*sqrt(l+sqrt(1-x*x)))
// k number of times
r = float_table(_SQRT2, precision);
for (i = @; i < k; ++1)
v /= r * sgrt(cl + sqrt(cl - v.square()));

vsq = v.square();
r=v;
asinx = v;
if (group == 1)
{

// Now iterate using Taylor expansion
for (i = 3;; i += 2, ++loopcnt)

{

// Multiplication fits into 64-bit
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}
{

else

uc
1c

float_precision((i - 2) * (i - 2));
float precision(i * i - i);

r *= uc * vsq / lc;
if (asinx + r == asinx)

break;

asinx += r;

}

std: :vector<float precision> vn(group); // vn[@] is not used
std: :vector<float _precision> un(group);
std: :vector<float_precision> 1ln(group);

for (i

// Now
for (i

0; 1 < group; ++i)

{// Adjust to working precision
un[i].precision(precision);
In[i].precision(precision);
vn[i].precision(precision);

if (i

== 1) vn[1l] = vsq;

if (i > 1) vn[i] = vn[i - 1] * vsq;

}

iterate
= 355 )

{

// Recalculate the coefficients
intmax_t j; uintmax_t tmp;
for (j = group - 1; j >= 0; --3)

}

{

if (j == group - 1)
{
tmp = (i - 2); tmp *= tmp;
uc = float precision(tmp); un[j] = uc;
tmp = (i - 1+ j * 2); tmp *=tmp + 1;
lc = float_precision(tmp); 1ln[j]=1c;
}

{

tmp = 1 - 4 + (group - j) * 2; tmp *= tmp;
uc = float_precision(tmp);

un[j] = uc;

tmp =1 -1+ j * 2; tmp *= tmp + 1;

lc = float_precision(tmp);

In[Jj] = Ic;

un[3] *= un[j + 1]; 1n[j] *= In[j + 1];

}

else

In[@] = 1n[@].inverse();
// Adding from smallest to largest number

uc

terms = vn[group - 1]* un[@];

for (j = group - 1; j >= 2; --3)

terms += (un[group-j]1*1In[j]) * vn[j - 1];

terms += un[group - 1] * 1n[1];
i += 2*group;

loopcnt += group;

r *= vsq * 1ln[0@];

terms *= r;
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if (asinx + terms == asinx)
break;
asinx += terms;
if (group > 1)
r *= uc; // ajust r to last Taylor term
}

}

// Revere argument reduction
if (k > 9)
asinx.adjustExponent(+k); // asinx*=27k

// Round to same precision as argument and rounding mode
asinx.mode(x.mode());
asinx.precision(x.precision());

if (sign < @)
asinx.change_sign();
return asinx;

}

Recommendation for calculating Arcsin(x)

Based on the performance measure of the various arcsin(x) methods recommend:

e The preferred method is to use the Taylor series for arcsin(), together with
argument reduction and coefficient scaling.

e Arcsin() using the Newton method does not perform as well as the Taylor series
method. The performance issue gets worse with increasing precision.

¢ Only use a moderate number of argument reductions since it is very time-
consuming to calculate. (Involving a division and two square roots calculation).

Arccos(x):
To find Arccos(x) we used the identity:
Arccos(x) = % — Arcsin(x) (22)

It is not much else you can do.

Source for Arccos(x)
float_precision acos( const float_precision& x )

{

size t precision;
float_precision y;

const float_precision c1(1);
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if( x > cl || x < -c1)
throw float_precision::domain_error(); }

precision = x.precision();

y = _float_table( _PI, precision );

y.adjustExponent(-1);

y -= asin( x );

// Round to the same precision as argument and rounding mode
y.mode( x.mode() );

y.precision( precision );

return y;

}

Arctan(x):

There are two interesting methods to use. One is the standard Taylor series and the other
one is contributed to Euler which is considered faster than the Taylor series (at least
fewer terms are needed).

Arctan(x) using the Taylor series

For arctan(x) we can use a Taylor series until any additional addition does not change the
result for the given precision of the number:

3 5 7 9
Arctan(x)=x—x?+x?—x7+%—---,where x| <1 (23)

However, before we start the Taylor series we first need to reduce the argument x to a
smaller value that will make the Taylor series run faster by using fewer Taylor terms.
We use the identity:

Arctan(x) = 2 - arctan (Hxﬁ) (24)

k number of times until x is sufficiently low.

This argument reduction is done to reduce the number of Taylor steps and minimize the
round-off errors and calculation time and of course, ensure that our Taylor series is
stable.

We calculate the reducing factor, k as:

2 - [In(2) = In(precision)] (25)

and adjust the reduction factor downwards if x is small to avoid unnecessary reductions.
We should be careful not to be too aggressive because of the reduction formula:
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Arctan(x) = 2 - arctan (Hxﬁ)

(26)

Require one division and one square root, two addition. The benefit of using reduction
slows down and becomes counterproductive when the reduction factor exceeds 30-40.

After the Taylor series has converged, we multiply the result with 2% to find our result for
arctan(x). Now looking closer at the argument reduction, you will notice that we never
need more than one argument reduction to reduce x>1 to x<1. The first reduction will

give us a max of 1 since:

or

X

lim (———
o \1 4 VI 22

lim

X
x>—eo (1 +VI+ x2>

=—1

To see how this algorithm works let us find the arctan(0.3). After the 13" Taylor terms
the errors do not get lower and the result is ~ 0.291456794477867.

ArcTan(x) Taylor
X=

No Reduction

Terms Term Value
3.00E-01
9.00E-03
4.86E-04
3.12E-05
2.19E-06
1.61E-07
1.23E-08
9.57E-10
7.60E-11
6.12E-12
4.98E-13
4.09E-14
3.39E-15

O 00 NO UL WN -

O
w N - O

Original
0.3
0
Taylor sum
0.300000000000000
0.291000000000000
0.291486000000000
0.291454757142857
0.291456944142857
0.291456783100130
0.291456795364153
0.291456794407559
0.291456794483524
0.291456794477407
0.291456794477905
0.291456794477864
0.291456794477867

X Reduced
0.3

Arctan(x)
0.300000000000000
0.291000000000000
0.291486000000000
0.291454757142857
0.291456944142857
0.291456783100130
0.291456795364153
0.291456794407559
0.291456794483524
0.291456794477407
0.291456794477905
0.291456794477864
0.291456794477867

Error
8.54E-03
4.57E-04
2.92E-05
2.04E-06
1.50E-07
1.14E-08
8.86E-10
7.03E-11
5.66E-12
4.60E-13
3.77E-14
3.16E-15
2.22E-16

Now if we take two-argument reduction we reduced the number of Taylor terms taken.
E.g., arctan(0.3) gives the result after only six Taylor terms.

ArcTan(x) Taylor
X=

Original
0.3

X Reduced
0.072993423
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No Reduction 2
Terms Term Value Taylor sum Arctan(x) Error
1 7.30E-02 0.072993423050513 0.291973692202050 5.17E-04
2 1.30E-04 0.072863785762585 0.291455143050342 1.65E-06
3 4.14E-07 0.072864200190164 0.291456800760656 6.28E-09
4 1.58E-09 0.072864198612959 0.291456794451837 2.60E-11
5 6.54E-12 0.072864198619495 0.291456794477981 1.13E-13
6 2.85E-14 0.072864198619467 0.291456794477867 5.55E-16

If we do four argument reductions, we only need four Taylor terms to get the result. As
we have seen before, argument reduction is crucial to lowering the number of Taylor
terms needed when precision is increased.

The issue with arbitrary precision

The Number of Taylor terms to reach a result does not seem so bad at a first glance. In
the previous examples, we were only using approx. 15 decimal digits. However, when we
are dealing with higher precisions e.g. 1,000 digits, 10,000, or even 100,000 digits we
suddenly have to perform a lot more Taylor terms to find our result. You can find the
approximate value for the number of Taylor Terms # by:

xZn—

< 107P (27)

2n-1

Where P is the precision in decimal digits and |x| < 1. The terms we dropped are the 2"
terms. Given

2n+1DIn(x) —In(2n+1) = —P -In (10) (28)

-In(2n+1) is small compare to (2n+1)In(x) so we drop it and get:

2n+ 1) In(x) = —P - In(10) =>

—P-In(10)

2n+1) = e

- —P-In(10)—In (x)
~ 2-In(x) ( 29)
Now if we use x=10M where M is the magnitude of the number we can further simplify it:

-P-M
2:M

(30)
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The number of Taylor terms needed for arctan(x) as a function of precision and argument
magnitude.

Digits 10! 102 103 104 10° 106 107 108

X

10! 5 50 500 5,000 | 50,000 | 500,000 | 5,000,000 @ 50,000,000
102 2 25 250 2,500 25,000 250,000 2,500,000 @ 25,000,000
1073 1 16 166 1,666 @ 16,666 166,666 | 1,666,666 16,666,666
10+ 1 12 125 1,250 12,500 125,000 1,250,000 12,500,000
105 1 10 100 1,000 @ 10,000 ' 100,000 | 1,000,000 @ 10,000,000
106 0 8 83 833 8,333 = 83,333 833,333 8,333,333
107 0 7 71 714 7,142 | 71,428 | 714,285 7,142,857
108 0 6 62 625 6,250 62,500 625,000 | 6,250,000
10”° 0 5 55 555 5,555 | 55,555 555,555 5,555,555

This table indicates the usefulness of argument reduction.

The table above is quite interesting. E.g., the effect of argument reduction for a precision
of 100 digits reduces the number of Taylor terms by a factor of six between arguments of
-1 in magnitude down to an argument of 10~ in magnitude is around a factor of 10 times
fewer Taylor Terms. However overall argument reduction is beneficial at any precision.

Arctan(x) using coefficient scaling

We have seen that we can gain typically 2-3 times better performance if we implement
coefficient scaling. If we try to group two Taylor terms to avoid a division, we get from
the Taylor series for arctan where n denoted the n’th Taylor term for arctan if term 7 is

even we start with a minus sign otherwise +, and then we alternate the sign for each
Taylor term going forward:

xn—l xn+1

m—1 mt1

Two Taylor terms: —

@2n+ Dx™ 1+ (2n— 1Dk
- 2n—-1)(2n+1)

et —(2n+1)+ (2n—1)x?
Cn-1)(2n+1)

If we group three Taylor terms, we get:

nor —@n+1D(@2n+3)+ 2n—1D(2n +3)x* — 2n - 1)(2n + Dx*
x Zn—1)(2n+ D(2n +3)
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We can continue grouping Taylor terms. From a practical point of view, grouping five
Taylor terms together is a reasonable amount as it will double the performance compared
to not doing it.

Source for Arctan(x) with argument reduction & coefficient scaling

float_precision atan(const float_precision& x)
{
const int group = 5;
size t precision = x.precision() + 2 + (size t)ceil(logl@(x.precision()));
intmax_t k, i;
size t loopcnt = 1;
float_precision r, atanx, v(x), vsq, terms;
const float_precision c1(1);

Automatically calculate the optimal reduction factor as a power of two
k = 2 * (intmax_t)ceil(log(2)*log(precision));
if (v.exponent() >= 0)
++k; // We only need one reduction to get x below 1
Else // Avoid unnecessary argument reduction if v is small
k += v.exponent();
k = std::max((intmax_t)@, k);

// Adjust the precision
if (k > 9)

precision += k / 4; ;
r.precision(precision);
atanx.precision(precision);
v.precision(precision);
vsqg.precision(precision);
terms.precision(precision);

// Transform the solution to ArcTan(x)=2*ArcTan(x/(1l+sqrt(1+x”2)))
for (i = k; i>0; --i )
v =V / (c1 + sgrt(cl + v.square()));

vsq = v.square();
r=v;
atanx = v;
if (group == 1)
{
// Now iterate using Taylor expansion
for (i = 3;; i += 2, ++loopcnt)
{
v *= vsq;
v.change_sign();
r =v / float_precision(i);

if (atanx + r == atanx)
break;
atanx += r;
}
}
else
{

std: :vector<float precision> vn(group); // vn[@] is not used
std: :vector<float_precision> cn(group+1);
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for (i = ©; i < group; ++i)
{
cn[i].precision(precision); vn[i].precision(precision);
if (i == 1) vn[1] = vsq;
if (1 > 1) vn[i] = vn[i - 1] * vsq;
b
cn[group].precision(precision);
// Now iterate
for (i = 3;; )
{
// Recalculate the coefficients
intmax_t j, m;
for (j = @, cn[group]=cl; j < group; ++3j)
{
cn[j] = c1;
cn[group] *= float_precision(i + 2 * j);
for (m = @; m < group; ++m)

if (m == j) continue;
cn[j] *= float_precision(i + 2 * m);

¥
if ((1+2*3J)/2 &ex1)
cn[j].change_sign();
}

cn[group] = cn[group].inverse();
// Summing adding from smallest to the largest number
terms = vn[group - 1] * cn[group-1];
for (j = group - 1; j >= 2; --j)
terms += cn[j-1] * vn[]j - 1];
terms += cn[0@];
i += 2 * group;
loopcnt += group;

r *= vsq;

terms *= r * cn[group];

if (atanx + terms == atanx)
break;

atanx += terms;
if (group > 1)

r *= vn[group - 1]; // ajust r to last Taylor term
}

}
atanx.adjustExponent(k); // multiply with 27k

// Round to same precision as argument and rounding mode
atanx.mode(x.mode());

atanx.precision(x.precision());

return atanx;

}

Arctan(x) using the Euler method
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Euler devised another series for arctan that supposedly converges more quickly than the
Taylor series. The series can be expressed (alternatively) as:

Arctan(x) = Yo -0

ZZn(n!)Z ZZn+1

(2n+1)! (14x2)n+t

(31)

For x>0.4 required fewer Terms than the equivalent Taylor series, e.g. arctan(0.6)
requires 25 terms to get the result. While using the Taylor series requires 30 Taylor
terms. As x increased, it get worse. However, for x<0.4 the Taylor series and the Euler

series require approximately the same number of terms.

ArcTan(x)
X=
No Reduction
Terms
1

O 00 NO ULl A WN

NNNNNNRRRRPRRRRPRRR
OB WNROWOVLWOMNOOULDWNERO

Euler Original
0.6
0
Term Value Euler sum
4.41E-01 0.441176470588235
7.79E-02 0.519031141868512
1.65E-02 0.535518013433747
3.74E-03 0.539258732192246
8.80E-04 0.540138901311893
2.12E-04 0.540350706715016
5.18E-05 0.540402460071436
1.28E-05 0.540415246194786
3.19E-06 0.540418431664964
7.99E-07 0.540419230498042
2.01E-07 0.540419431884533
5.10E-08 0.540419482874974
1.30E-08 0.540419495832545
3.30E-09 0.540419499135455
8.44E-10 0.540419499979607
2.16E-10 0.540419500195850
5.55E-11 0.540419500251357
1.43E-11 0.540419500265630
3.68E-12 0.540419500269306
9.48E-13 0.540419500270254
2.45E-13 0.540419500270499
6.33E-14 0.540419500270562
1.64E-14 0.540419500270579
4.24E-15 0.540419500270583
1.10E-15 0.540419500270584

X Reduced
0.6

Arctan(x)
0.441176470588235
0.519031141868512
0.535518013433747
0.539258732192246
0.540138901311893
0.540350706715016
0.540402460071436
0.540415246194786
0.540418431664964
0.540419230498042
0.540419431884533
0.540419482874974
0.540419495832545
0.540419499135455
0.540419499979607
0.540419500195850
0.540419500251357
0.540419500265630
0.540419500269306
0.540419500270254
0.540419500270499
0.540419500270562
0.540419500270579
0.540419500270583
0.540419500270584

Error
9.92E-02
2.14E-02
4.90E-03
1.16E-03
2.81E-04
6.88E-05
1.70E-05
4.25E-06
1.07E-06
2.70E-07
6.84E-08
1.74E-08
4.44E-09
1.14E-09
2.91E-10
7.47E-11
1.92E-11
4.95E-12
1.28E-12
3.30E-13
8.54E-14
2.21E-14
5.66E-15
1.44E-15
3.33E-16

As with the Taylor series using argument reduction greatly reduced the number of terms
needed. E.g. arctan(0.6) using a reduction factor of four requires only 5 terms (same as
for the Taylor series).

ArcTan(x)

Euler

Original

X Reduced

26 February 2023.

www.hvks.com/Numerical/arbitrary precision.html Page 37



Fast Trigonometric functions for Arbitrary Precision numbers

X= 0.6 0.033789069
No Reduction 4
Terms Term Value Euler sum Arctan(x) Error

1 3.38E-02 0.033750535945282 0.540008575124517 4.11E-04
2 2.57E-05 0.033776195334449 0.540419125351177 3.75E-07
3 2.34E-08 0.033776218744006 0.540419499904093  3.66E-10
4 2.29E-11 0.033776218766888 0.540419500270213  3.71E-13
5 2.32E-14 0.033776218766912 0.540419500270584 3.33E-16

Another drawback is that each Euler term requires more computational power than the
corresponding Taylor series. Overall it is not worth using the Euler version of arctan(x)
over the Taylor series version.

Arctan(x) using Arcsin()

It could be interesting to use the identity:
Arctan(x) = Arcsin (ﬁ) (32)

Particularly if you want to reduce the size of your code and reuse existing code for
arcsin(). However, the performance is slightly slower (20%-30%) than using the Taylor
series for arctan().

Source for Arctan(x) using Arcsin()
float_precision atan_asin(const float_precision& x)

{

size_t precision = x.precision()+2+(size_t)ceil(logl@(x.precision()));
float_precision atanx(x);

const float_precision c1(1);

atanx.precision(precision);

atanx = testasin(atanx / sqrt(cl + atanx.square()));

// Round to same precision as argument and rounding mode
atanx.mode(x.mode());

atanx.precision(x.precision());

return atanx;

}

Recommendation for calculating Arctan(x)

Based on the performance measure of the various arctan(x) methods recommend:

e The preferred method is to use the Taylor series for arctan(x), together with
argument reduction and coefficient scaling.
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e Arctan(x) using the Euler series has no advantages over the Taylor series for
argument < 0.4. For argument x>0.4, it is more beneficial to stick with the Taylor
series and use the recommended argument reduction and coefficient scaling for
increased performance.

e Arctan(x) using arcsin(x) is an alternative that is slower but can be used to
simplify and reduce code size.

e Only use a moderate number of argument reductions since it is very time-
consuming to calculate. (Involving a division and a square root calculation).

26 February 2023. www.hvks.com/Numerical/arbitrary precision.html Page 39



Fast Trigonometric functions for Arbitrary Precision numbers

Reference

1) Arbitrary precision library package. Arbitrary Precision C++ Packages
(hvks.com)

2) Numerical recipes in C++, 3" edition, Cambridge University Press, New Y ork,
NY 2007

3) HVE Fast Log() calculation for arbitrary precision; Fast Log() calculation for
arbitrary precision (hvks.com)

4) HVE Fast Exp() calculation for arbitrary precision; Fast Exp() calculation for
arbitrary precision (hvks.com)

5) The Yacas book of algorithms, Version 1.3.3, April 1 2013 by the Yacas team

6) Richard Brent & Paul Zimmermann, Modern Computer Arithmetic, Version 0.5.9
17 October 2010; http://maths-people.anu.edu.au/~brent/pd/mca-cup-0.5.9.pdf

7) The Math behind arbitrary precision for integer and floating-point arithmetic. The

Math behind arbitrary precision (hvks.com)

26 February 2023. www.hvks.com/Numerical/arbitrary precision.html Page 40



